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Motor protein with nonequilibrium potential: Its thermodynamics and efficiency
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A nonequilibrium potential function is introduced for a motor protein modeled by a rectified Brownian
motion. This result provides a concrete case for a class of nonequilibrium systems in steady state with
dissipation which possess a potential function. The potentialm is a natural generalization of the chemical
potential for isothermal chemical species andm5const if and only if the system is in an equilibrium. The
steady-state fluxJ}2“m, and the total heat dissipationhd equals a surface integral*mJ•dS, representing the
energy input. In terms ofm and hd the thermodynamic energy conservation in the mesoscopic stochastic
system can be rigorously established and various types of motor efficiency are elucidated.
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One of the hallmarks of equilibrium statistical mechan
and thermodynamics is the existence of a potential funct
Within the framework of stochastic dynamics modeled
Langevin equations@1,2# we have recently established th
relations among the existence of such a potential, tim
reversibility, detailed balance, and zero entropy product
@3#. There is no consensus on whether such a potential e
for systems in nonequilibrium steady state~NESS! @4#. Mo-
tor proteins isolated from biological cells provide a concr
model for stochastic molecular systems that operates
NESS, converting chemical energy into mechanical wo
Understanding the motor protein, on which a large body
literature already exists, is important both for the fundam
tal theories of NESS and for practical nanotechnolo
@5–10#.

One class of the models of motor proteins which are m
directly related to the realistic, all-atom based molecular
namics is the rectified Brownian motion@9#. We show that
one of the unique features of this class of stochastic mo
is its solvability in terms of a nonequilibrium potential fun
tion m. We find that in terms of thism, a rigorous NESS
thermodynamics can be established for the stochastic sy
including energy conservation and efficiencies of motor p
teins.

One of the next challenges in studying motor proteins
to integrate phenomenological models with realistic atom
structures, carrying out large-scale simulations by a com
nation of molecular dynamics, Brownian dynamics, a
quantum mechanics~for enzyme catalysis! @11#. In all these
approaches, protein conformational dynamics is based o
molecular energy function or potential of mean forceU
~which should not be confused with them, see below!, and
the conformational space for the atoms in the molecule w
the presence of an appropriate linear molecular track for
motor protein is continuous. Following Refs.@8,10#, we shall
denotey as the internal conformational space of the mo
protein, andx as its center of mass with respect to the line
track. This is the natural respresentation of motor prote
with atomic structures.y has a very high dimension andx
can be either one dimensional or three dimensional if mo
dissociation from the track is considered.

A key component of models for motor proteins is the AT
molecule. We foresee that the majority of the simulation
1063-651X/2004/69~1!/012901~4!/$22.50 69 0129
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fort will be focused on the ATP hydrolysis by the catalyt
motor protein. For concreteness, let us denotey50 as
M-ATP and y51 as M-ADP; with a realistic molecula
structure,y50 ~or 1! represents a region of the conform
tional space of motor-ATP~ADP! complex with appropriate
bond lengths and bond angles. Hence, the molecular en
functionU(x,y) is for the tertiary complex of motor protein
nucleotide, and linear track.

The driving force of the motor protein comes from th
exchange of bounded ADP aty51 for free ATP. To simplify
our discussion, we neglect the orthophosphate Pi but its
corporation is straightforward. The exchange process is
Brownian collision in aqueous solution, and it can be na
rally represented as a boundary condition for the hydroly
kinetics. Note that changing the ATP and ADP concentratio
in the solution does not affect theU. In Brownian dynamic
term, therefore, we have a diffusion equation

] tP~x,y,t !5Dx]x$]xP1b~]xU !P%

1Dy¹y$¹yP1b~¹yU !P% ~1!

in which b5(kBT)21. The boundary conditions are@12#

Jy~x,0!5Jy~x,1!5n1~x!P~x,1!2n0~x!P~x,0!, ~2!

whereJy(x,y) 5 2Dy$¹yP1b(¹yU)P%, n1(x) and n2(x)
are thex-dependent on-rate constants for ATP and ADP,
spectively@7,13#:

n1~x!5v1g~x!eblDU(x)@cT#,

n0~x!5v0g~x!e2b(12l)DU(x)@cD#, ~3!

in which DU(x)5U(x,1)2U(x,0), g(x) models the differ-
ential binding affinity between the nucleotide and the mo
protein at differentx. If one is only interested in the NESS
with ]P/]t50, then further we have a periodic bounda
conditionP(0,y)5P(L,y) and]xP(0,y)5]xP(L,y), where
L is the period of the linear track, i.e., 36 Å for an act
filament. The stationary flux

Jx52E
0

1

Dx$]xP~x,y!1b]xUP~x,y!%dy, ~4!
©2004 The American Physical Society01-1
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andJxL is the stationary velocity of the motor.
The dynamics of the nucleotide in this model can be sc

matically represented as@12# hydrolysis on the motor en
zyme M-ATP
 M-ADP and exchange in the aqueous so
tion M-ADP 1 ATP
 M-ATP 1 ADP. In the practice of
molecular simulation, an empirical boundary is drawn b
tween these two reactions, i.e., how far apart between a
and an ATP when they are still considered as a comp
M-ATP. Both reactions arex dependent since the motor pro
tein at differentx should have a different molecular structur
The chemical potentials for the species in the aqueous s
tion aremT 5 mT

o1kBTln@cT#, mD5mD
o 1kBTln@cD#, and

mMT~x!5U~x,0!1kBTlnP~x,0!,

mMD~x!5U~x,1!1kBTlnP~x,1!. ~5!

We shall denote the chemical potential difference for
exchange reactionDmex(x)[mD1mMT(x)2mT2mMD(x)
5kBTlnn0(x)P(x,0)/n1(x)P(x,1).

Equilibrium thermodynamics. When the concentrations o
ATP and ADP in solution satisfy

g[
v1@cT#

v0@cD#
51, ~6!

the stationary solution to Eq.~1! is in fact the equi-
librium distribution P(x,y)5Z21e2bU(x,y), where Z(b)
5*0

1*0
Lexp$2bU(x,y)%dx dy. In the equilibrium, mMT(x)

5mMD(x), mT5mD , andv1 /v05exp$(mT
o2mD

o )/kBT%. Fur-
thermore,Jy50 andJx50. There is no ATP hydrolysis, an
the motor has no velocity.

NESS thermodynamics. Under the cellular physiologica
condition,

mT2mD5mT
o2mD

o 1kBT ln
@cT#

@cD#
5kBT ln g.0. ~7!

It is well known that even though Eq.~1! has a potential
function, the differential operator is not self-adjoint and t
diffusion process is not reversible due to the nonlocal fl
boundary condition~2! @14,15#. Hence, the stationary sto
chastic process obtained from Eq.~1! is time-irreversible
with positive heat dissipation@3#.

We now show that this class of stochastic models exhi
several surprising simple thermodynamic structure in NE
We introduceP(x,y)5Q(x,y)e2bU(x,y) which has a clear
physical meaning:

m~x,y![kBT ln Q~x,y!5U~x,y!1kBT ln P~x,y! ~8!

which is the mesoscopic generalization of the NESS che
cal potential~Gibbs free energy!, and 2“m(x,y)52¹U
2kBT“ ln P is Onsager’s thermodynamic force@2#. More
importantly, we have NESS Onsager thermodynamic flux

J52Dx$]xP1b~]xU !P%2Dy$¹yP1b~¹yU !P%

}2¹m~x,y!. ~9!
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The proportionality indicates that this class of nonequil
rium systems follows the Onsager’s theory of linear irreve
ibility with ‘‘mobility tensor’’ bP(x,y)D as the symmetric
Onsager matrix. It is important to point out that while it
known that irreversibility in a closed system can be rep
sented by a Helmholtz potential@2#, it is not known that such
a potential exists for an open system.

Q(x,y) satisfies the equation with boundary conditions

Dx$]xxQ2b~]xU !]xQ%1Dy$¹y
2Q2b~¹yU !¹yQ%50,

~10!

e2bU(x,0)¹yQ~x,0!5e2bU(x,1)¹yQ~x,1!

52n~x!$gQ~x,1!2Q~x,0!%, ~11!

in which n(x)5(vo@cD#/Dy)g(x)exp$2b@(12l)U(x,1)
1lU(x,0)#%, Q(0,y)5Q(L,y), and]xQ(0,y)5]xQ(L,y).
This equation forQ(x,y) provides the Kolmogorov’s back
ward equation with an alternative physical interpretation
NESS.

In terms of the NESSJ andm, we now establish the law
of energy conservation. Equation~9! gives Jx(x,y)
52bDxe

b(m2U)]xm andJy(x,y)52bDye
b(m2U)¹ym. The

NESS heat dissipation rate, which equals the entropy prod
tion rate and is always positive@10,3#, is given as

hd5kBTE
0

1E
0

L

eb(U2m)S Jx
2

Dx
1

Jy
2

Dy
Ddx dy

2E
0

L

Dmex~x!Jy~x,0!dx ~12!

5bE
0

1E
0

L

eb(m2U)$Dx~]xm!21Dy~¹ym!2%dx dy

2E
0

L

Dmex~x!Jy~x,0!dx

5E
0

L

@m~x,0!2m~x,1!2Dmex~x!#Jy~x,0!dx ~13!

5~mT2mD!E
0

L

Jy~x,0!dx. ~14!

The two terms in Eq.~12! are the heat dissipation rates fro
the hydrolysis reaction and the exchange reaction, res
tively. Equations~12!–~14! establish energy conservation
The right-hand side is the ATP energy going into the syst
and the left-hand side is the dissipated heat.

Efficiency under an external force. We now consider that
the motor is moving against a constant external forceFext
.0. Then Eq.~1! will be modified by replacing]xU with
(]xU2Fext). Carrying out the same analysis as above,
now have Eq.~14! becoming@16#,

hd5~mT2mD!E
0

L

Jy~x,0!dx2FextLJx , ~15!
1-2
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whereJx is given in Eq.~4!, JxL is the motor velocity. Equa-
tion ~15! establishes the energy conservation for a single m
tor protein moving against a constant external force, and
efficiency is thus naturally defined as

h5
FextLJx

f cm
~16!

in which we denote (mT2mD)*0
LJy(x,0)dx as chemical mo-

tive force (f cm).
With the energy balanced, one can further discuss sev

FIG. 1. Three different types of NESS flux lines of th
divergent-free vector fieldJ5(Jx ,Jy)(x,y)—solution to Eq.~1!;
]P/]t 5 2“•J50. Type I ~dotted line!; movement without hy-
drolysis; type II~dashed line!, hydrolysis without movement; type
III ~solid line!, hydrolysis coupled movement which involves nucl
otide exchange, fromy51 back toy50, as boundary condition.
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different definitions of efficiency for motor proteins. This
the only logical approach to efficiency, which has been tak
in Refs.@17,6#. Reference@17# calledh the thermodynamic
efficiency. Reference@18# suggests that the work done by
motor protein to overcome the translational friction is a u
ful work. Hence their efficiency has an additional ter
(kBT/Dx)(JxL)2 on the numerator of Eq.~16!. This effi-
ciency emphasizes the internal dissipation due to intram
lecular friction @Jy

2/Dy term in Eq.~13!#. According to this
definition, a motor protein with rapid biochemical reactio
@10#, thus a tight-coupling between hydrolysis and mov
ment, hasJy50, Jx(x)5const, and 100% efficiency.

Reference@19# points out an important difference betwee
thermodynamic and Stokes efficiencies. The external fo
Fext is assumed to be a potential force, i.e.,Uext(x)
52Fextx. If the external force is introduced via a hydrod
namic drag on a spherical object with frictional coefficientz,
then one can no longer compute the stored energy in
external force, instead one needs to compute the mean w
done against the external drag force. The work in terms
Stratonovich integral is rigorously defined for the Browni
dynamics@2#. In this case, thehd in Eq. ~15! has two parts:
an intrinsic heat dissipation and a heat dissipation associ
with the work against the applied darg which should be n
also on the numerator of Eq.~16!.

For applied viscous drag,Dx in Eq. ~1! should be modi-
fied to D̃x5Dx /(11bzDx). The heat dissipation associate
with D̃x in Eq. ~13! is decomposed into@20#
~17!
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The thermodynamic efficiency, in this case, can be define

h5
hdrext1FextLJx

f cm
>

hdrext

f cm2FextLJx
5

hdrext

hdr
5hStokes.

~18!

The efficiency also has an interesting topological rep
sentation. In a NESS, the solution to Eq.~1! gives a stochas
tic flux distribution (Jx ,Jy) in the (x,y) phase space with
“•J50. In Fig. 1, three types of flux lines are illustrated.
can be shown that the type I is impossible@10#; and the type
II is a futile cycle. Hence, the efficiency is the fraction
type III flux lines in the (x,y) space. If there is no type I
flux line, the motor efficiency is 1@21#.

Microscopic reversibility and rectified Brownian motion.
The present model for motor proteins differs fundamenta
from the existing models in several key aspects@5,7,6#. First,
in the bulk of the conformational space, there is a poten
function U(x,y), hence it satisfies the microscopic reve
ibility @22#. In this respect, our model belongs to the class
as

-

y

l
-
f

NESS models such as boundary-driven lattice gases and
asymmetric exclusion process, also called rectified Brown
motion @9#. One of the unique features of this class of s
chastic models is its solvability in terms of a free ener
function ~8!: m5kBTln Q. For each open driven system
there exists a well-defined corresponding closed nondri
system with no-flux boundary conditions. The latter syst
has Boltzmann distributionZ21eU(x,y)/kBT as its stationary,
equilibrium distribution. When the driven boundary is im
posed, the NESS solutionPness(x,y) is directly related to the
chemical potential through the well-known formulam(x,y)
5U(x,y)1kBT ln Pness(x,y).

From Brownian dynamics to phenomenological mode.
With further analysis, the present model naturally leads t
class of widely studied motor-protein models which treat
chemical transformation as discrete events@5,7,17#. In this
case, we realize that the ATP hydrolysis involves a la
activation energy barrier~Eyring’s transition state!. Let us
assume that, for eachx, the position of the transition state i
y‡(x), a hypersurface in the (x,y) conformational space
1-3
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Then one can define a discrete,x-dependent M-ATP state a
$y(x)u0<y(x),y‡(x)% and a discrete M-ADP state a
$y(x)u1>y(x).y‡(x)%. Furthermore, computational meth
ods can be used to compute the chemical potentials for
discrete M-ATP and M-ADP@23#, as well as the first-orde
rate constants between the two states. Thus, the pre
model puts the phenomenological models on a rigorous
lecular basis.

In summary, molecular dynamic study of motor protei
necessitates a continuous formalism for the protein con
mational space. This model introduces a feature that dif
from the general stochastic theory of NESS@3# which as-
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sumes a nonpotential force field. In the more realistic mo
the irreversibility ~non-self-adjointness! is derived from a
nonlocal boundary condition@14,15#. Such models have a
complete and solvable thermodynamic structure in terms
NESS flux and most importantly it possesses a NESS che
cal potential. Since the conservation of energy can be m
ematically established, the model offers a rigorous introd
tion of and provides a comprehensive theory for mo
efficiency.

I thank Ping Ao, Michael Fisher, Ron Fox, Toly Kolom
eisky, Brian Walton, Hong-yun Wang, and Huan-xiang Zh
for helpful discussions.
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