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Motor protein with nonequilibrium potential: Its thermodynamics and efficiency
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A nonequilibrium potential function is introduced for a motor protein modeled by a rectified Brownian
motion. This result provides a concrete case for a class of nonequilibrium systems in steady state with
dissipation which possess a potential function. The poteptizd a natural generalization of the chemical
potential for isothermal chemical species guéconst if and only if the system is in an equilibrium. The
steady-state fludec—Vu, and the total heat dissipatidry equals a surface integrfjuJ-dS, representing the
energy input. In terms ofx and hy the thermodynamic energy conservation in the mesoscopic stochastic
system can be rigorously established and various types of motor efficiency are elucidated.
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One of the hallmarks of equilibrium statistical mechanicsfort will be focused on the ATP hydrolysis by the catalytic
and thermodynamics is the existence of a potential functionmotor protein. For concreteness, let us dengteO as
Within the framework of stochastic dynamics modeled byM-ATP and y=1 as M-ADP; with a realistic molecular
Langevin equation$1,2] we have recently established the structure,y=0 (or 1) represents a region of the conforma-
relations among the existence of such a potential, timetional space of motor-ATRADP) complex with appropriate
reversibility, detailed balance, and zero entropy productiorpond lengths and bond angles. Hence, the molecular energy
[3]. There is no consensus on whether such a potential existanctionU(x,y) is for the tertiary complex of motor protein,
for systems in nonequilibrium steady stédESS [4]. Mo-  nucleotide, and linear track.
tor proteins isolated from biological cells provide a concrete The driving force of the motor protein comes from the
model for stochastic molecular systems that operates igxchange of bounded ADP wt=1 for free ATP. To simplify
NESS, converting chemical energy into mechanical workour discussion, we neglect the orthophosphate Pi but its in-
Understanding the motor protein, on which a large body ofcorporation is straightforward. The exchange process is by
literature already exists, is important both for the fundamenBrownian collision in agqueous solution, and it can be natu-
tal theories of NESS and for practical nanotechnologyrally represented as a boundary condition for the hydrolysis
[5-10. kinetics. Note that changing the ATP and ADP concentrations

One class of the models of motor proteins which are mostn the solution does not affect the. In Brownian dynamic
directly related to the realistic, all-atom based molecular dyterm, therefore, we have a diffusion equation
namics is the rectified Brownian motid®]. We show that
one of the unique features of this class of stochastic models P (x,y,t)=Dydx{dxP+ B(xU)P}
is its solvability in terms of a nonequilibrium potential func-
tion . We find that in terms of thig., a rigorous NESS TDyAWPFA(RUIPY @

thermodynamics can be established for the stochastic systeg which g= (kgT) ~*. The boundary conditions afé2]
including energy conservation and efficiencies of motor pro-

teins. Jy(X,00=Jy(X,1) = v1(X) P(X,1) = vo(X)P(x,0),  (2)
One of the next challenges in studying motor proteins is
to integrate phenomenological models with realistic atomiovhereJ (x,y) = —D{V,P+B(V,U)P}, v1(x) and v,(x)

structures, carrying out large-scale simulations by a combiare thex-dependent on-rate constants for ATP and ADP, re-
nation of molecular dynamics, Brownian dynamics, andspectively[7,13]:
guantum mechanicdor enzyme catalysjg11]. In all these

approaches, protein conformational dynamics is based on a v1(X) = w,9(x) eV ¢y,
molecular energy function or potential of mean forde AL MVAUW)
(which should not be confused with the, see beloy, and vo(X) = wog(x)e”# [col, ()

the conformational space for the atoms in the molecule with ) ]

the presence of an appropriate linear molecular track for thé Which AU(x)=U(x,1)—U(x,0), g(x) models the differ-
motor protein is continuous. Following Ref8,10], we shall entlal_ blndln_g affinity betwe_en the nucleotlde _and the motor
denotey as the internal conformational space of the motorProtein at differenx. If one is only interested in the NESS
protein, andk as its center of mass with respect to the linearWith dP/dt=0, then further we have a periodic boundary
track. This is the natural respresentation of motor protein§onditionP(0,y)=P(L,y) andd,P(0y)=dxP(L.y), where
with atomic structuresy has a very high dimension and L is the period of the linear track, i.e., 36 A for an actin
can be either one dimensional or three dimensional if motofilament. The stationary flux

dissociation from the track is considered.

. . 1
A key component of models for motor proteins is th_e ATP J=— f D, {0 P(x,y)+ BaUP(x,y)dy, (4
molecule. We foresee that the majority of the simulation ef- 0
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andJ,L is the stationary velocity of the motor. The proportionality indicates that this class of nonequilib-

The dynamics of the nucleotide in this model can be scherium systems follows the Onsager’s theory of linear irrevers-
matically represented d42] hydrolysis on the motor en- ibility with “mobility tensor” BP(x,y)D as the symmetric
zyme M-ATP= M-ADP and exchange in the aqueous solu-Onsager matrix. It is important to point out that while it is
tion M-ADP + ATP = M-ATP + ADP. In the practice of known that irreversibility in a closed system can be repre-
molecular simulation, an empirical boundary is drawn be-sented by a Helmholtz potenti&], it is not known that such
tween these two reactions, i.e., how far apart between an M potential exists for an open system.
and an ATP when they are still considered as a complex Q(x,y) satisfies the equation with boundary conditions
M-ATP. Both reactions ar& dependent since the motor pro-
tein at differentx should have a different molecular structure.  D,{d,,Q— B(d,U)3,Q} + Dy{Vf,Q—,B(VyU)VyQ}z 0,
The chemical potentials for the species in the aqueous solu- (10
tion areur = u3+kgTIn[cr], up=up+kgTIN[cp], and

pr = prtkeTIn[cr], up=up+KkeTIn[cp] efﬁU(X'O)VyQ(X,O)=ef'BU(X'1)VyQ(x,1)

=—v(X){yQ(x.D)-Q(x,0}, (11)

in which  (x)=(wo[ cp]/Dy)g(x)exp—AL(L-N)U(x1)

We shall denote the chemical potential difference for the}kh};:é)éf;gi}o,n%()?(’)y()x:y?(érggiagggﬁé(i(g%gzgﬁg%,g;.ck

exchange reactiom wq,(X)= up~+ umt(X) — u1— mp(X) ) A ; S T

— KsTINvYPX.0) /1 (X) P(x.1). \I/\Ivgréisequatlon with an alternative physical interpretation in
Equilibrium thermodynamicdVhen the concentrations of n térms of the NESS and ., we now establish the law

ATP and ADP in solution satisfy of energy conservation. Equation9) gives J.(X,Yy)
wicr] =—BD,e?* g, u andd,(x,y) = — BD,eF# "IV u. The

y=—"T -1, (6)  NESS heat dissipation rate, which equals the entropy produc-

ol Cp] tion rate and is always positid0,3], is given as

umt(X)=U(X,0)+kgTInP(x,0),

mvp(X)=U(x,1)+kgTInP(x,1). (5)

the stationary solution to Eq(l) is in fact the equi- 1L 2 2
librium distribution P(x,y)=Z"te AY*Y) where Z(B) hd:kBTJ f eBU—n) D_X+_V dx dy
0JO X y

= [elsexp—BU(xy)}dxdy In the equilibrium, wyr(x)
= ump(X), ur=pup, andw;/wo=exp{(u7—up)/ksT}. Fur- L
thermore J,=0 andJ,=0. There is no ATP hydrolysis, and —f A pex(X)dy(X,0)dx (12
the motor has no velocity. 0

NESS thermodynamic&/nder the cellular physiological

L. 1 (L
condiion, —p] [ 1D (0,74 Dy (B 7 ay

[cr]
pur—pp=ps—puptkeT |HE=kBT Iny>0. (7)

It is well known that even though Edl) has a potential L
function, the differential operator is not self-adjoint and the :f [(%,0) = 1(X,1) = A e (x)1Jy(x,00dx  (13)
diffusion process is not reversible due to the nonlocal flux 0
boundary condition(2) [14,15. Hence, the stationary sto-
chastic process obtained from E(l) is time-irreversible L
with positive heat dissipatiof8]. :(MT_MD)L Jy(x,0)dx. (14)

We now show that this class of stochastic models exhibits
several surprising simple thermodynamic structure in NESSthe two terms in Eq(12) are the heat dissipation rates from
We mtroduceFf(x,y):Q(x,y)e*BU(xvY) which has a clear the hydrolysis reaction and the exchange reaction, respec-
physical meaning: tively. Equations(12)—(14) establish energy conservation.

The right-hand side is the ATP energy going into the system
p(x,Y)=kgT INQ(x,y)=U(X,y) +kgT INP(X,y) (8)  and the left-hand side is the dissipated heat.

o ] o . Efficiency under an external forc#/e now consider that
which is the mesoscopic generalization of the NESS chemighe motor is moving against a constant external fdfge,
cal potential(Gibbs free energy and —Vu(x,y)=—VU =0 Then Eq.(1) will be modified by replacing, U with

—kgTVInP is Onsager's thermodynamic for¢€]. More (5 y—F_ ). Carrying out the same analysis as above, we
importantly, we have NESS Onsager thermodynamic flux 5w have Eq(14) becoming[16]

- fLA,ueX(X)Jy(X,O)dX
0

J=—-D 3P+ B(3,U)P}—D{V,P+B(V,U)P}
x=Vu(xy). 9)

L

he= (11— o) fo 3,(0dx—Feldy, (15
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different definitions of efficiency for motor proteins. This is
the only logical approach to efficiency, which has been taken
in Refs.[17,6]. Referencd17] called » the thermodynamic
efficiency. Referencgl8] suggests that the work done by a
motor protein to overcome the translational friction is a use-
ful work. Hence their efficiency has an additional term
(kgT/D,)(J4L)? on the numerator of Eq(16). This effi-
ciency emphasizes the internal dissipation due to intramo-
lecular friction[Ji/Dy term in Eq.(13)]. According to this
definition, a motor protein with rapid biochemical reaction
[10], thus a tight-coupling between hydrolysis and move-
FIG. 1. Three different types of NESS flux lines of the ment, hasl, =0, J,(x) =const, and 100% efficiency.
divergent-free vector field=(J,,J,)(x,y)—solution to Eq.(1); Referencg19] points out an important difference between
dPlgt = —V-J=0. Type | (dotted ling; movement without hy-  thermodynamic and Stokes efficiencies. The external force
drolysis; type ll(dashed ling hydrolysis without movement; type Fox iS assumed to be a potential force, i.éJg,(X)
III_ (solid ling), hydrolysis coupled movement which invoIve;_nucle- = —F,,x. If the external force is introduced via a hydrody-
otide exchange, frony=1 back toy=0, as boundary condition. namic drag on a spherical object with frictional coefficiént
then one can no longer compute the stored energy in the
external force, instead one needs to compute the mean work
done against the external drag force. The work in terms of
8tratonovich integral is rigorously defined for the Brownian
dynamics[2]. In this case, thény in Eq. (15) has two parts:

chemical coordinate

0

wherel, is given in Eq.(4), J,L is the motor velocity. Equa-
tion (15) establishes the energy conservation for a single mo
tor protein moving against a constant external force, and th
efficiency is thus naturally defined as

Fould an intrinsic heat dissipation and a heat dissipation associated
n= efx X (16)  with the work against the applied darg which should be now
cm also on the numerator of E(L6).

in which we denote,(LT—,uD)bey(x,O)dx as chemical mo- Forgpplied viscous drad), in Eqg. (1) should be modi-
tive force (o). fied toD,=D,/(1+ B¢D,). The heat dissipation associated

With the energy balanced, one can further discuss severalith D, in Eq. (13) is decomposed intf20]

_ [l (L B*{D;, BD
. AUy ) 2dx d :—xff —xjf
D fo joe Fapu)dxdy+ (1+B¢D,)? +(1+ﬁng)2 i
) hdr ) hdr ., ) hdr i, 17)

The thermodynamic efficiency, in this case, can be defined aSESS models such as boundary-driven lattice gases and the
asymmetric exclusion process, also called rectified Brownian
hdreyt FexlJy hdrey hdrey motion [9]. One of the unique features of this class of sto-
= >f “F.LJ. ndr _Tstokes chastic models is its solvability in terms of a free energy
cm ext=vx . .
(18) function (8): u=kgTInQ. For each open driven system,
there exists a well-defined corresponding closed nondriven
The efficiency also has an interesting topological repreSYStem with no-flux boundary conditions. The latter system
: ; ; has Boltzmann distributio ~1eV*¥)/sT as its stationar
sentation. In a NESS, the solution to E#)) gives a stochas- bol st ) \ary,
tic flux distribution @,,J,) in the (x,y) phase space with equilibrium d|str|but|on'. When the_ drl_ven boundary is im-
V-J=0. In Fig. 1, three types of flux lines are illustrated. It Posed, the NESS solutid?**{x,y) is directly related to the
can be shown that the type | is impossipl®]; and the type  chemical potential through the well-known formylgx,y)
Il is a futile cycle. Hence, the efficiency is the fraction of =U(X,y) +kgT In P"5{x.y).
type Il flux lines in the &,y) space. If there is no type I From Brownian dynamics to phenomenological models
flux line, the motor efficiency is 121]. With further analysis, the present model naturally leads to a
Microscopic reversibility and rectified Brownian motion class of widely studied motor-protein models which treat the
The present model for motor proteins differs fundamentallychemical transformation as discrete eve8%,17. In this
from the existing models in several key aspg6t3,6]. First, case, we realize that the ATP hydrolysis involves a large
in the bulk of the conformational space, there is a potentiahctivation energy barrie(Eyring’s transition state Let us
function U(x,y), hence it satisfies the microscopic revers-assume that, for each the position of the transition state is
ibility [22]. In this respect, our model belongs to the class ofy*(x), a hypersurface in thex(y) conformational space.

n

me
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Then one can define a discrekedependent M-ATP state as sumes a nonpotential force field. In the more realistic model
{y(x)|0=<y(x)<y*(x)} and a discrete M-ADP state as the irreversibility (non-self-adjointnegsis derived from a
{y(x)|1=y(x)>y*(x)}. Furthermore, computational meth- nonlocal boundary conditiofil4,15. Such models have a
ods can be used to compute the chemical potentials for theomplete and solvable thermodynamic structure in terms of
discrete M-ATP and M-ADR23], as well as the first-order NESS flux and most importantly it possesses a NESS chemi-
rate constants between the two states. Thus, the presetdl potential. Since the conservation of energy can be math-
model puts the phenomenological models on a rigorous maeematically established, the model offers a rigorous introduc-
lecular basis. tion of and provides a comprehensive theory for motor
In summary, molecular dynamic study of motor proteinsefficiency.
necessitates a continuous formalism for the protein confor- | thank Ping Ao, Michael Fisher, Ron Fox, Toly Kolom-
mational space. This model introduces a feature that differsisky, Brian Walton, Hong-yun Wang, and Huan-xiang Zhou
from the general stochastic theory of NEEH which as-  for helpful discussions.
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